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Chapter 24
Logistic Regression

By the end of this chapter you will understand:

1 The purposes of logistic regression.
2 How to use SPSS to perform logistic regression.
3 How to interpret the SPSS printout of logistic regression.

Introduction
This chapter extends our ability to conduct regression, in this case where the DV is a 
nominal variable. Our previous studies on regression have been limited to scale data DVs.

The purpose of logistic regression

The crucial limitation of linear regression is that it cannot deal with DV’s that are dichoto-
mous and categorical. Many interesting variables in the business world are dichotomous: for 
example, consumers make a decision to buy or not buy, a product may pass or fail quality 
control, there are good or poor credit risks, an employee may be promoted or not. A range of 
regression techniques have been developed for analysing data with categorical dependent 
variables, including logistic regression and discriminant analysis (DA) (Chapter 25).

Logistical regression is regularly used rather than DA when there are only two categories 
of the dependent variable. Logistic regression is also easier to use with SPSS than DA when 
there is a mixture of numerical and categorical IV’s, because it includes procedures for 
generating the necessary dummy variables automatically, requires fewer assumptions, and 
is more statistically robust. DA strictly requires the continuous independent variables 
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(though dummy variables can be used as in multiple regression). Thus, in instances where 
the independent variables are categorical, or a mix of continuous and categorical, and the 
DV is categorical, logistic regression is necessary.

Since the dependent variable is dichotomous we cannot predict a numerical value for it 
using logistic regression, so the usual regression least squares deviations criteria for best fi t 
approach of minimizing error around the line of best fi t is inappropriate. Instead, logistic 
regression employs binomial probability theory in which there are only two values to 
predict: that probability (p) is 1 rather than 0, i.e. the event/person belongs to one group 
rather than the other. Logistic regression forms a best fi tting equation or function using the 
maximum likelihood method, which maximizes the probability of classifying the observed 
data into the appropriate category given the regression coeffi cients. We will avoid the more 
complicated mathematics of this.

Like ordinary regression, logistic regression provides a coeffi cient ‘b’, which measures 
each IV’s partial contribution to variations in the DV. The goal is to correctly predict 
the category of outcome for individual cases using the most parsimonious model. To 
accomplish this goal, a model (i.e. an equation) is created that includes all predictor 
variables that are useful in predicting the response variable. Variables can, if necessary, 
be entered into the model in the order specifi ed by the researcher in a stepwise fashion 
like regression.

There are two main uses of logistic regression:

The fi rst is the prediction of group membership. Since logistic regression calculates the 
probability of success over the probability of failure, the results of the analysis are in 
the form of an odds ratio.
Logistic regression also provides knowledge of the relationships and strengths among 
the variables (e.g. marrying the boss’s daughter puts you at a higher probability for job 
promotion than undertaking fi ve hours unpaid overtime each week).

Assumptions of logistic regression

Logistic regression does not assume a linear relationship between the dependent and 
independent variables.
The dependent variable must be a dichotomy (2 categories).
The independent variables need not be interval, nor normally distributed, nor linearly 
related, nor of equal variance within each group.
The categories (groups) must be mutually exclusive and exhaustive; a case can only be 
in one group and every case must be a member of one of the groups.

•

•

•

•
•

•

Logistic regression. Determines the impact of multiple independent variables 
presented simultaneously to predict membership of one or other of the two 

dependent variable categories.
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Larger samples are needed than for linear regression because maximum likelihood 
coeffi cients are large sample estimates. A minimum of 50 cases per predictor is 
recommended.

A non-mathematical illustration of logistic regression

The dependent variable we are attempting to predict is whether an unsolicited email 
providing an emailed offer is opened or not by the recipient. There are two independent 
variables:

Presence or absence of recipient’s fi rst name in the subject line.
Presence or absence of the offer in the subject line.

Thus there are four possible combinations of interest:

Presence of fi rst name, presence of offer in subject line.
Absence of fi rst name, presence of offer in subject line.
Presence of fi rst name, absence of offer in subject line.
Absence of fi rst name, absence of offer in subject line

For each of the options, an email is sent to a random sample of 5,000 recipients to ensure a 
low margin of error and high level of confi dence. After a minimum of eight hours, results 
of whether the email was opened are analyzed and a logistical regression equation is gener-
ated for each of the options. Each equation predicts the impact of the independent variables 
on encouraging the consumer to take the desired action: opening and reading the email.

You are able to determine which combination of the independent variables leads consumers 
to open the email most frequently. This analysis could also be run against individual customer 
segments. Some customer segments may respond to a combination of independent variables 
to which other customer segments are not responsive. For example, you might fi nd that the 
independent variable of fi rst name present only had a positive impact on recipients who 
were 39 and younger; the independent variable of fi rst name present with no offer had 
no impact on recipients 40 and older. Then you know which variables to use or not when 
sending emails to recipients of different age groups.

The logistic regression equation

While logistic regression gives each predictor (IV) a coeffi cient ‘b’ which measures its 
independent contribution to variations in the dependent variable, the dependent variable 
can only take on one of the two values: 0 or 1. What we want to predict from a knowledge 
of relevant independent variables and coeffi cients is therefore not a numerical value of a 
dependent variable as in linear regression, but rather the probability (p) that it is 1 rather 
than 0 (belonging to one group rather than the other).

But even to use probability as the dependent variable is unsound, mainly because numerical 
predictors may be unlimited in range. If we expressed p as a linear function of investment, 

•

•
•

•
•
•
•
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we might then fi nd ourselves predicting that p is greater than 1 (which cannot be true, as 
probabilities can only take values between 0 and 1). Additionally, because logistic regression 
has only two y values – in the category or not in the category – a straight line best fi t (as in 
linear regression) is not possible to draw. Consider the following hypothetical example:

200 accountancy fi rst year students are graded on a pass-fail dichotomy on the end of the 
semester accountancy exam. At the start of the course, they all took a maths pre-test with 
results reported in interval data ranging from 0–50 – the higher the pretest score the more 
competency in maths. Logistic regression is applied to determine the relationship between 
maths pretest score (IV or predictor) and whether a student passed the course (DV). Students 
who passed the accountancy course are coded 1 while those who failed are coded 0.

We can see from Figure 24.1 of the plotted ‘x’s’ that there is somewhat greater likelihood 
that those who obtained above average to high score on the maths test passed the accoun-
tancy course, while below average to low scorers tended to fail. There is also an overlap in 
the middle area. But if we tried to draw a straight (best fi tting) line, as with linear regression, 
it just would not work, as intersections of the maths results and pass/fail accountancy results 
form two lines of x’s, as in Figure 24.1.

The solution is to convert or transform these results into probabilities. We might compute 
the average of the Y values at each point on the X axis. We could then plot the probabilities 
of Y at each value of X and it would look something like the wavy graph line superimposed 
on the original data in Figure 24.2. This is a smoother curve, and it is easy to see that the 
probability of passing the accountancy course (Y axis) increases as values of X increase. 
What we have just done is transform the scores so that the curve now fi ts a cumulative 
probability curve, i.e. adding each new probability to the existing total. As you can see, this 
curve is not a straight line; it is more of an s-shaped curve. Predicted values are interpreted as 
probabilities and are now not just two conditions with a value of either 0 or 1 but continuous 
data that can take any value from 0 to 1.

The slope of the curve in Figure 24.2 is low at the lower and upper extremes of the 
independent variable and greatest in the middle where it is most sensitive. In the middle, of 
course, are a number of cases that are out of order, in the sense that there is an overlap with 
average maths scores in both accountancy pass and fail categories, while at the extremes are 

Figure 24.1 Maths results of 200 accountancy students plotted against the 
pass-fail categories.

Independent Variable Maths Score (X)

Pass 1

Fail 0

Y

xx x x xx xxxxxxxxxxxxxx

xxxxxxxxxxxx x xx x x xx x x



572 EXTENSION CHAPTERS ON ADVANCED TECHNIQUES

cases which are almost universally allocated to their correct group. The outcome is not a predic-
tion of a Y value, as in linear regression, but a probability of belonging to one of two conditions 
of Y, which can take on any value between 0 and 1 rather than just 0 and 1 in Figure 24.1.

Unfortunately a further mathematical transformation – a log transformation – is needed 
to normalize the distribution. You met this in Chapter 8, where log transformations and 
sq. root transformations moved skewed distributions closer to normality. So what we are 
about to do is not uncommon. This log transformation of the p values to a log distribution 
enables us to create a link with the normal regression equation. The log distribution 
(or logistic transformation of p) is also called the logit of p or logit(p).

Logit(p) is the log (to base e) of the odds ratio or likelihood ratio that the dependent 
variable is 1. In symbols it is defi ned as:

logit ln(p) log[p / (1 p)] [p / (1 p)]= =− −

Whereas p can only range from 0 to 1, logit(p) scale ranges from negative infi nity to positive 
infi nity and is symmetrical around the logit of .5 (which is zero). Formula 24.1 below 
shows the relationship between the usual regression equation (a + bx … etc.), which is a 
straight line formula, and the logistic regression equation.

The form of the logistic regression equation is:

logit [p(x)] log
p(x)

1 p(x)
a b x b x1 1 2 2=

−
= + +

⎡

⎢
⎢

⎤

⎥
⎥ ++ b x …3 3

This looks just like a linear regression and although logistic regression fi nds a ‘best 
fi tting’ equation, just as linear regression does, the principles on which it does so are 
rather different. Instead of using a least-squared deviations criterion for the best fi t, it 
uses a maximum likelihood method, which maximizes the probability of getting the 
observed results given the fi tted regression coeffi cients. A consequence of this is that the 
goodness of fi t and overall signifi cance statistics used in logistic regression are different 

Figure 24.2 Maths results plotted against probability of allocation to pass/fail 
categories.

Independent Variable Maths Score
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from those used in linear regression. p can be calculated with the following formula 
(formula 24.2) which is simply another rearrangement of formula 24.1:

p
exp

exp
=

+

+ + +

+ + +

(a b x b x b x …)

(a b x b x b

1 1 2 2 3 3

1 1 2 21 33 3x …)
 formula 24.2

Where:

    p = the probability that a case is in a particular category,
 exp = the base of natural logarithms (approx 2.72),
     a = the constant of the equation and,
     b = the coeffi cient of the predictor variables.

Formula 24.2 involves another mathematic function, exp, the exponential function. ln, the 
natural logarithm, and exp are opposites. The exponential function is a constant with the value 
of 2.71828182845904 (roughly 2.72). When we take the exponential function of a number, we 
take 2.72 raised to the power of the number. So, exp(3) equals 2.72 cubed or (2.72)3 = 20.09.

The natural logarithm is the opposite of the exp function. If we take ln(20.09), we get the 
number 3. These are common mathematical functions on many calculators.

Don’t worry, you will not have to calculate any of this mathematical material by hand. 
I have simply been trying to show you how we get from a regression formula for a line to 
the logistic analysis.

Logistic regression – involves fi tting an equation of the form to the data: 
logit(p) = a + b1x1 + b2x2 + b3x3 + …

Interpreting log odds and the odds ratio

What has been presented above as mathematical background will be quite diffi cult for 
some of you to understand, so we will now revert to a far simpler approach to consider how 
SPSS deals with these mathematical complications.

The Logits (log odds) are the b coeffi cients (the slope values) of the regression equation. 
The slope can be interpreted as the change in the average value of Y, from one unit of 
change in X. In SPSS the b coeffi cients are located in column ‘B’ in the ‘Variables in the 
Equation’ table. Logistic regression calculates changes in the log odds of the dependent, 
not changes in the dependent value as OLS regression does. For a dichotomous variable the 
odds of membership of the target group are equal to the probability of membership in the 
target group divided by the probability of membership in the other group. Odds value can 
range from 0 to infi nity and tell you how much more likely it is that an observation is a 
member of the target group rather than a member of the other group. If the probability is 
0.80, the odds are 4 to 1 or .80/.20; if the probability is 0.25, the odds are .33 (.25/.75). 
If the probability of membership in the target group is .50, the odds are 1 to 1 (.50/.50), as 
in coin tossing when both outcomes are equally likely.
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Another important concept is the odds ratio (OR), which estimates the change in the 
odds of membership in the target group for a one unit increase in the predictor. It is calcu-
lated by using the regression coeffi cient of the predictor as the exponent or exp. Assume in 
the example earlier where we were predicting accountancy success by a maths competency 
predictor that b = 2.69. Thus the odds ratio is exp2.69 or 14.73. Therefore the odds of passing 
are 14.73 times greater for a student, for example, who had a pre-test score of 5, than for a 
student whose pre-test score was 4.

SPSS actually calculates this value of the ln(odds ratio) for us and presents it as EXP(B) 
in the results printout in the ‘Variables in the Equation’ table. This eases our calculations 
of changes in the DV due to changes in the IV. So the standard way of interpreting a ‘b’ in 
logistic regression is using the conversion of it to an odds ratio using the corresponding 
exp(b) value. As an example, if the logit b = 1.5 in the B column of the ‘Variables in the 
Equation’ table, then the corresponding odds ratio (column exp(B)) quoted in the SPSS 
table will be 4.48. We can then say that when the independent variable increases one unit, 
the odds that the case can be predicted increase by a factor of around 4.5 times, when other 
variables are controlled. As another example, if income is a continuous explanatory variable 
measured in ten thousands of dollars, with a ‘b’ value of 1.5 in a model predicting home 
ownership = 1, no home ownership = 0. Then since exp(1.5) = 4.48, a 1 unit increase in income 
(one $10,000 unit) increases the odds of home ownership about 4.5 times. This process will 
become clearer through following through the SPSS logistic regression activity below.

Model fi t and the likelihood function

Just as in linear regression, we are trying to fi nd a best fi tting line of sorts but, because the 
values of Y can only range between 0 and 1, we cannot use the least squares approach. The 
Maximum Likelihood (or ML) is used instead to fi nd the function that will maximize our 
ability to predict the probability of Y based on what we know about X. In other words, ML 
fi nds the best values for formula 24.1 above.

Likelihood just means probability. It always means probability under a specifi ed hypothesis. 
In logistic regression, two hypotheses are of interest:

the null hypothesis, which is when all the coeffi cients in the regression equation take 
the value zero, and
the alternate hypothesis that the model with predictors currently under consideration is 
accurate and differs signifi cantly from the null of zero, i.e. gives signifi cantly better 
than the chance or random prediction level of the null hypothesis.

We then work out the likelihood of observing the data we actually did observe under each 
of these hypotheses. The result is usually a very small number, and to make it easier to 
handle, the natural logarithm is used, producing a log likelihood (LL). Probabilities are 
always less than one, so LL’s are always negative. Log likelihood is the basis for tests of a 
logistic model.

The likelihood ratio test is based on –2LL ratio. It is a test of the signifi cance of the 
difference between the likelihood ratio (–2LL) for the researcher’s model with 
predictors (called model chi square) minus the likelihood ratio for baseline model with 

•

•
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The likelihood ratio test. This tests the difference between –2LL for the full 
model with predictors and –2LL for initial chi-square in the null model.

only a constant in it. Signifi cance at the .05 level or lower means the researcher’s model 
with the predictors is signifi cantly different from the one with the constant only (all ‘b’ 
coeffi cients being zero). It measures the improvement in fi t that the explanatory variables 
make compared to the null model. Chi square is used to assess signifi cance of this ratio.

When probability fails to reach the 5% signifi cance level, we retain the null hypothesis 
that knowing the independent variables (predictors) has no increased effects (i.e. make no 
difference) in predicting the dependent.

We will now have a look at the concepts and indices introduced above by running an 
SPSS logistic regression and see how it all works in practice.

SPSS activity – a logistic regression analysis

Access SPSS Ch 24 Data File A. This fi le contains data from a survey of home owners 
conducted by an electricity company about an offer of roof solar panels with a 50% subsidy 
from the state government as part of the state’s environmental policy. The variables involve 
household income measured in units of a thousand dollars, age, monthly mortgage, size of 
family household, and whether the householder would take or decline the offer. Please 
follow the instructions below and conduct a logistic regression to determine whether family 
size and monthly mortgage will predict taking or declining the offer.

1 Click Analyze >> Regression >> Binary Logistic.
2 Select the grouping variable (the variable to be predicted) which must be a dichoto-

mous measure and place it into the Dependent box (Fig. 24.3). For this example it is 
‘take solar panel offer’. The convention for binomial logistic regression is to code the 
dependent class of greatest interest as 1 and the other class as 0, because the coding will 
affect the odds ratios and slope estimates.

3 Enter your predictors (IV’s) into the Covariates box. These are ‘family size’ and 
‘mortgage’. Do not alter the default method of Enter unless you wish to run a Stepwise 
logistic regression. Forward selection is the usual option for a stepwise regression, 
starting with the constant-only model and adding variables one at a time. The forward 
stepwise logistic regression method utilizes the likelihood ratio test (chi square differ-
ence) which tests the change in –2LL between steps to determine automatically which 
variables to add or drop from the model. This is considered useful only for exploratory 
purposes. Selecting model variables on a theoretic basis and using the Enter method is 
preferred.

4 Should you have any categorical predictor variables, click on ‘Categorical’ button and 
enter it (there is none in this example). The defi ne categorical variables box is 
displayed as in Figure 24.4. SPSS asks what coding methods you would like for the 
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Figure 24.3 Logistic regression dialogue box.

Figure 24.4 Categorical variables box.
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predictor variable (under the Categorical button), and there are several options to 
choose from. For most situations, choose the ‘indicator’ coding scheme (it is the 
default). You can choose to have the fi rst or last category of the variable as your 
baseline reference category. Usually, the absence of the factor is coded as 0, and the 
presence of the factor is coded 1. If so, you want to make sure that the fi rst category 
(the one of the lowest value) is designated as the reference category in the categorical 
dialogue box. SPSS will convert categorical variables to dummy variables automati-
cally. The class of greatest interest should be the last class (1 in a dichotomous variable 
for example).

5 Click on Options button and select Classifi cation Plots, Hosmer-Lemeshow Goodness 
Of Fit, Casewise Listing Of Residuals and select Outliers Outside 2sd. Retain default 
entries for probability of stepwise, classifi cation cutoff and maximum iterations 
(Fig. 24.5).

6 Continue then OK.

Figure 24.5 Options dialogue box.

Interpretation of printout Table 24.1
The fi rst few tables in your printout are not of major importance. The fi rst one to take note 
of is the Classifi cation table (Table 24.1) in Block 0 Beginning Block.

1 Block 0: Beginning Block. Block 0 presents the results with only the constant included 
before any coeffi cients (i.e. those relating to family size and mortgage) are entered into 
the equation. Logistic regression compares this model with a model including all the 
predictors (family size and mortgage) to determine whether the latter model is more 
appropriate. The table suggests that if we knew nothing about our variables and guessed 
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that a person would not take the offer we would be correct 53.3% of the time. The 
variables not in the equation table tells us whether each IV improves the model 
(Table 24.3). The answer is yes for both variables, with family size slightly better than 
mortgage size, as both are signifi cant and if included would add to the predictive power 
of the model. If they had not been signifi cant and able to contribute to the prediction, 
then termination of the analysis would obviously occur at this point.

2 Block 1 Method = Enter. This presents the results when the predictors ‘family size’ and 
‘mortgage’ are included. Later SPSS prints a classifi cation table which shows how the 
classifi cation error rate has changed from the original 53.3%. By adding the variables 
we can now predict with 90% accuracy (see Classifi cation Table 24.8 below). The 
model appears good, but we need to evaluate model fi t and signifi cance as well. SPSS will 
offer you a variety of statistical tests for model fi t and whether each of the independent 
variables included make a signifi cant contribution to the model.

Table 24.1 The classifi cation table

Classifi cation Tablea,b

Predicted

Take solar panel offer
  Percentage 
  correctObserved Decline offer Take offer

Step 0 take solar panel decline offer 0 14        .0
offer take offer 0 16     100.0
Overall Percentage      53.3

a Constant is included in the model.
b The cut value is .500.

Table 24.2 Variables in the equation table

Variables in the Equation

B S.E. Wald df Sig. Exp(B)

Step 0 Constant .134 .366 .133 1 .715 1.143

Table 24.3 Variables not in the equation table

Variables not in the Equation

Score df Sig.

Step 0 Variables Famsize 14.632 1 .000
Mortgage  6.520 1 .011

Overall Statistics 15.085 2 .001



LOGISTIC REGRESSION 579

3 Model chi-square. The overall signifi cance is tested using what SPSS calls the Model 
Chi square, which is derived from the likelihood of observing the actual data under the 
assumption that the model that has been fi tted is accurate. There are two hypotheses to 
test in relation to the overall fi t of the model:

 H
0
 The model is a good fi tting model.

 H
1
 The model is not a good fi tting model (i.e. the predictors have a signifi cant effect).

The difference between –2LL for the best-fi tting model and –2LL for the null hypoth-
esis model (in which all the b values are set to zero in block 0) is distributed like 
chi squared, with degrees of freedom equal to the number of predictors; this difference 
is the Model chi square that SPSS refers to. Very conveniently, the difference between –
2LL values for models with successive terms added also has a chi squared distribution, 
so when we use a stepwise procedure, we can use chi-squared tests to fi nd out if adding 
one or more extra predictors signifi cantly improves the fi t of our model. The –2LL 
value from the Model Summary table below is 17.359.

In our case model chi square has 2 degrees of freedom, a value of 24.096 and a prob-
ability of p < 0.000 (Table 24.4). Thus, the indication is that the model has a poor fi t, 
with the model containing only the constant indicating that the predictors do have a 
signifi cant effect and create essentially a different model. So we need to look closely at 
the predictors and from later tables determine if one or both are signifi cant predictors.

This table has 1 step. This is because we are entering both variables and at the same 
time providing only one model to compare with the constant model. In stepwise logis-
tic regression there are a number of steps listed in the table as each variable is added or 
removed, creating different models. The step is a measure of the improvement in the 
predictive power of the model since the previous step.

4 Model Summary. Although there is no close analogous statistic in logistic regression to 
the coeffi cient of determination R2 the Model Summary Table 24.5 provides some 
approximations. Cox and Snell’s R-Square attempts to imitate multiple R-Square based 

Table 24.4 Omnibus tests of model coeffi cients

Omnibus Tests of Model Coeffi cients

Chi-square df Sig.

Step 1 Step 24.096 2 .000
Block 24.096 2 .000
Model 24.096 2 .000

Table 24.5 Model Summary

Model Summary

Step −2 Log likelihood Cox & Snell R square Nagelkerke R square

1 17.359a .552 .737

a Estimation terminated at iteration number 8 because parameter estimates changed by less than .001.
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on ‘likelihood’, but its maximum can be (and usually is) less than 1.0, making it diffi cult 
to interpret. Here it is indicating that 55.2% of the variation in the DV is explained by the 
logistic model. The Nagelkerke modifi cation that does range from 0 to 1 is a more reliable 
measure of the relationship. Nagelkerke’s R2 will normally be higher than the Cox and 
Snell measure. Nagelkerke’s R2 is part of SPSS output in the ‘Model Summary’ table and 
is the most-reported of the R-squared estimates. In our case it is 0.737, indicating a 
moderately strong relationship of 73.7% between the predictors and the prediction.

5 H-L Statistic. An alternative to model chi square is the Hosmer and Lemeshow test 
which divides subjects into 10 ordered groups of subjects and then compares the number 
actually in the each group (observed) to the number predicted by the logistic regression 
model (predicted) (Table 24.7). The 10 ordered groups are created based on their esti-
mated probability; those with estimated probability below .1 form one group, and so on, 
up to those with probability .9 to 1.0. Each of these categories is further divided into two 
groups based on the actual observed outcome variable (success, failure). The expected 
frequencies for each of the cells are obtained from the model. A probability (p) value is 
computed from the chi-square distribution with 8 degrees of freedom to test the fi t of the 
logistic model. If the H-L goodness-of-fi t test statistic is greater than .05, as we want for 
well-fi tting models, we fail to reject the null hypothesis that there is no difference 
between observed and model-predicted values, implying that the model’s estimates fi t 
the data at an acceptable level. That is, well-fi tting models show non-signifi cance on the 
H-L goodness-of-fi t test. This desirable outcome of non-signifi cance indicates that the 
model prediction does not signifi cantly differ from the observed.

 The H-L statistic assumes sampling adequacy, with a rule of thumb being enough 
cases so that 95% of cells (typically, 10 decile groups times 2 outcome categories = 20 
cells) have an expected frequency > 5. Our H-L statistic has a signifi cance of .605 
which means that it is not statistically signifi cant and therefore our model is quite a 
good fi t (Table 24.6)

6 Classifi cation Table. Rather than using a goodness-of-fi t statistic, we often want to look 
at the proportion of cases we have managed to classify correctly. For this we need to 
look at the classifi cation table printed out by SPSS, which tells us how many of the 
cases where the observed values of the dependent variable were 1 or 0 respectively have 
been correctly predicted. In the Classifi cation table (Table 24.8), the columns are the 
two predicted values of the dependent, while the rows are the two observed (actual) 
values of the dependent. In a perfect model, all cases will be on the diagonal and the 
overall percent correct will be 100%. In this study, 87.5% were correctly classifi ed for 
the take offer group and 92.9% for the decline offer group. Overall 90% were correctly 
classifi ed. This is a considerable improvement on the 53.3% correct classifi cation with the 
constant model so we know that the model with predictors is a signifi cantly better mode. 

Table 24.6 Hosmer and Lemeshow test

Hosmer and Lemeshow Test

Step Chi-square df Sig.

  1 6.378 8 .605
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But are both predictor variables responsible or just one of them? This is answered by 
the Variables in the Equation table.

Table 24.8 Classifi cation table

Classifi cation Tablea

Predicted

Take solar panel offer

Percentage correctObserved Decline offer Take offer

Step 1 take solar panel decline offer 13  1 92.9
offer take offer  2 14 87.5
Overall Percentage 90.0

a The cut value is .500.

Table 24.7 Contingency table for Hosmer and Lemeshow test

Contingency Table for Hosmer and Lemeshow Test

  Take solar panel offer = 
  decline offer

  Take solar panel offer = 
  take offer

Total Observed Expected   Observed Expected

Step 1  1 3 2.996 0  .004 3
 2 3 2.957 0  .043 3
 3 3 2.629 0  .371 3
 4 2 2.136 1  .864 3
 5 2 1.881 1 1.119 3
 6 0  .833 3 2.167 3
 7 0  .376 3 2.624 3

 8 1  .171 2 2.829 3

 9 0  .019 3 2.981 3
10 0  .000 3 3.000 3

7 Variables in the Equation. The Variables in the Equation table (Table 24.9) has several 
important elements. The Wald statistic and associated probabilities provide an index of 
the signifi cance of each predictor in the equation. The Wald statistic has a chi-square 
distribution.

The simplest way to assess Wald is to take the signifi cance values and if less 
than .05 reject the null hypothesis as the variable does make a signifi cant contribution. 
In this case, we note that family size contributed signifi cantly to the prediction 
(p = .013) but mortgage did not (p = .075). The researcher may well want to drop 
independents from the model when their effect is not signifi cant by the Wald statistic 
(in this case mortgage).
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 The Exp(B) column in Table 24.9 presents the extent to which raising the corre-
sponding measure by one unit infl uences the odds ratio. We can interpret EXP(B) in 
terms of the change in odds. If the value exceeds 1 then the odds of an outcome occur-
ring increase; if the fi gure is less than 1, any increase in the predictor leads to a drop in 
the odds of the outcome occurring. For example, the EXP(B) value associated with 
family size is 11.007. Hence when family size is raised by one unit (one person) the 
odds ratio is 11 times as large and therefore householders are 11 more times likely to 
belong to the take offer group.

The ‘B’ values are the logistic coeffi cients that can be used to create a predictive 
equation (similar to the b values in linear regression) formula 24.2, page 573. In this 
example:

Probability of a case
family size= × +e{( . ) (.2 399 0005 18 627

1 2 399

× −
+ ×

mortgage

family size

) . }

{( . )e ++ × −(. ) . }005 18 627mortgage

Here is an example of the use of the predictive equation for a new case. Imagine a 
householder whose household size including themselves was seven and paying 
a monthly mortgage of $2,500. Would they take up the offer, i.e. belong to category 1? 
Substituting in we get:

Probability of a case takingoffer
(2.399 7) (= × +e{ ..005 2500) 18.627

1 (2.399 7) (.005 2500

×
+ × + ×

– }

{e )) 18.627– }

=
+
e

e

10.66

10.661
= 0.99

Therefore, the probability that a householder with seven in the household and a mort-
gage of $2,500 p.m. will take up the offer is 99%, or 99% of such individuals will be 
expected to take up the offer.

Note that, given the non-signifi cance of the mortgage variable, you could be justifi ed 
in leaving it out of the equation. As you can imagine, multiplying a mortgage value by 
B adds a negligible amount to the prediction as its B value is so small (.005).

Table 24.9 Variables in the equation

Variables in the Equation

B S.E. Wald df Sig. Exp(B)

Step 1a Famsize   2.399  .962 6.215 1 .013 11.007
Mortgage    .005  .003 3.176 1 .075  1.005
Constant −18.627 8.654 4.633 1 .031   .000

a Variable(s) entered on step 1: Famsize, Mortgage.
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Effect size. The odds ratio is a measure of effect size. The ratio of odds ratios of the 
independents is the ratio of relative importance of the independent variables in terms of 
effect on the dependent variable’s odds. In our example family size is 11 times as 
important as monthly mortgage in determining the decision.

8 Classifi cation Plot. The classifi cation plot or histogram of predicted probabilities 
provides a visual demonstration of the correct and incorrect predictions (Table 24.10). 
Also called the ‘classplot’ or the ‘plot of observed groups and predicted probabilities’, 
it is another very useful piece of information from the SPSS output when one chooses 
‘Classifi cation plots’ under the Options button in the Logistic Regression dialogue 
box. The X axis is the predicted probability from .0 to 1.0 of the dependent being 
classifi ed ‘1’. The Y axis is frequency: the number of cases classifi ed. Inside the plot 
are columns of observed 1’s and 0’s (or equivalent symbols). The resulting plot is very 
useful for spotting possible outliers. It will also tell you whether it might be better to 
separate the two predicted categories by some rule other than the simple one SPSS 
uses, which is to predict value 1 if logit(p) is greater than 0 (i.e. if p is greater than .5). 
A better separation of categories might result from using a different criterion. We 
might also want to use a different criterion if the a priori probabilities of the two 
categories were very different (one might be winning the national lottery, for example), 
or if the costs of mistakenly predicting someone into the two categories differ 
(suppose the categories were ‘found guilty of fraudulent share dealing’ and ‘not 
guilty’, for example).

Look for two things:
(1) A U-shaped rather than normal distribution is desirable. A U-shaped distribution 

indicates the predictions are well-differentiated with cases clustered at each end 
showing correct classifi cation. A normal distribution indicates too many predictions 
close to the cut point, with a consequence of increased misclassifi cation around the 
cut point which is not a good model fi t. For these around .50 you could just as well 
toss a coin.

(2) There should be few errors. The ‘t’s’ to the left are false positives. The ‘d’s’ to the right 
are false negatives. Examining this plot will also tell such things as how well the model 
classifi es diffi cult cases (ones near p = .5).

9 Casewise List. Finally, the casewise list produces a list of cases that didn’t fi t the model 
well. These are outliers. If there are a number of cases this may reveal the need for fur-
ther explanatory variables to be added to the model. Only one case (No. 21) falls into this 
category in our example (Table 24.11) and therefore the model is reasonably sound. This 
is the only person who did not fi t the general pattern. We do not expect to obtain a perfect 
match between observation and prediction across a large number of cases.

No excessive outliers should be retained as they can affect results signifi cantly. The 
researcher should inspect standardized residuals for outliers (ZResid in Table 24.11) and 
consider removing them if they exceed > 2.58 (outliers at the .01 level). Standardized 
residuals are requested under the ‘Save’ button in the binomial logistic regression dialog 
box in SPSS. For multinomial logistic regression, checking ‘Cell Probabilities’ under the 
‘Statistics’ button will generate actual, observed, and residual values.
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Table 24.10 Classifi cation plot

Step number: 1

Observed Groups and Predicted Probabilities

8

F
R
E
Q
U
E
N
C
Y

6 t
t

d t
d t

4 d t
d t
d t t
d t t

2 dd dt t t t
dd dt t t t
dd d d dd d tt t ttd t t
dd d d dd d tt t ttd t t

Predicte

Group:   ddddddddddddddddddddddddddddddtttttttttttttttttttttttttttttt

Predicted Probability is of Membership for take offer
The Cut Value is .50
Symbols:  d - decline offer
          t - take offer
Each Symbol Represents .5 Cases 

1.75.50 .25Prob :

Table 24.11 Casewise list

Casewise Listb

Observed Temporary variable

Case Selected statusa

Take solar 
 panel offer Predicted Predicted group Resid ZResid

 21 S d** .924 t −.924 −3.483

a S = Selected, U = Unselected cases, and** = Misclassifi ed cases.
b Cases with studentized residuals greater than 2.000 are listed.
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How to report your results

You could model a write up like this:

‘A logistic regression analysis was conducted to predict take-up of a solar panel subsidy 
offer for 30 householders using family size and monthly mortgage payment as predictors. 
A test of the full model against a constant only model was statistically signifi cant, indicat-
ing that the predictors as a set reliably distinguished between acceptors and decliners of 
the offer (chi square = 24.096, p < .000 with df = 2).

Nagelkerke’s R2 of .737 indicated a moderately strong relationship between prediction 
and grouping. Prediction success overall was 90% (92.9% for decline and 87.5% for 
accept. The Wald criterion demonstrated that only family size made a signifi cant contribu-
tion to prediction (p = .013). Monthly mortgage was not a signifi cant predictor. EXP(B) 
value indicates that when family size is raised by one unit (one person) the odds ratio is 11 
times as large and therefore householders are 11 more times likely to take the offer’.

To relieve your stress
Some parts of this chapter may have seemed a bit daunting. But remember, SPSS does all 
the calculations. Just try and grasp the main principles of what logistic regression is all 
about. Essentially, it enables you to:

see how well you can classify people/events into groups from a knowledge of inde-
pendent variables; this is addressed by the classifi cation table and the goodness-of-fi t 
statistics discussed above;
see whether the independent variables as a whole signifi cantly affect the dependent 
variable; this is addressed by the Model Chi-square statistic.
determine which particular independent variables have signifi cant effects on the 
dependent variable; this can be done using the signifi cance levels of the Wald statistics, 
or by comparing the –2LL values for models with and without the variables concerned 
in a stepwise format.

•

•

•

SPSS Activity. Now access SPSS Chapter 24 Data File A on the website, and 
conduct your own logistic regression analysis using age and family size as 

predictors for taking or declining the offer. Write out an explanation of the 
results and discuss in class.

What you have learned from this chapter

Binomial (or binary) logistic regression is a form of regression which is used when the dependent 
is a dichotomy and the independents are of any type. The goal is to fi nd the best set of 
coeffi cients so that cases that belong to a particular category will, when using the equation, 

(Continued)
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Review questions

Qu. 24.1
Why are p values transformed to a log value in logistic regression?

(a) because p values are extremely small
(b) because p values cannot be analyzed
(c) because p values only range between 0 and 1
(d) because p values are not normally distributed
(e) none of the above

Qu. 24.2
The Wald statistic is:

(a) a beta weight
(b) equivalent to R2

(c) a measure of goodness of fi t
(d) a measure of the increase in odds

Qu. 24.3
Logistic regression is based on:

(a) normal distribution
(b) Poisson distribution
(c) the sine curve
(d) binomial distribution

have a very high calculated probability that they will be allocated to that category. This enables 
new cases to be classifi ed with a reasonably high degree of accuracy as well.

Logistic regression uses binomial probability theory, does not assume linearity of relationship 
between the independent variables and the dependent, does not require normally distributed 
variables, and in general has no stringent requirements.

Logistic regression has many analogies to linear regression: logit coeffi cients correspond to 
b coeffi cients in the logistic regression equation, the standardized logit coeffi cients correspond 
to beta weights, and the Wald statistic, a pseudo R2 statistic, is available to summarize the 
strength of the relationship. The success of the logistic regression can be assessed by looking 
at the classifi cation table, showing correct and incorrect classifi cations of the dependent. Also, 
goodness-of-fi t tests such as model chi- square are available as indicators of model appropri-
ateness, as is the Wald statistic to test the signifi cance of individual independent variables. The 
EXP(B) value indicates the increase in odds from a one unit increase in the selected variable.
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Qu. 24.4
Logistic regression is essential where,

(a) both the dependent variable and independent variable(s) are interval
(b) the independent variable is interval and both the dependent variables are categorical
(c) the sole dependent variable is categorical and the independent variable is not interval
(d)  there is only one dependent variable irrespective of the number or type of the 

independent variable(s)

Qu. 24.5
exp(B) in the SPSS printout tells us

(a) the probability of obtaining the dependent variable value
(b) the signifi cance of beta
(c) for each unit change in X what the change factor is for Y
(d) the signifi cance of the Wald statistic

Qu. 24.6
Explain briefl y why a line of best fi t approach cannot be applied in logistic regression.

Check your response in the material above.

Qu. 24.7
Under what circumstances would you choose to use logistic regression?

Check your response with the material above.

Qu. 24.8
What is the probability that a householder with only two in the household and a monthly 
mortgage of $1,700 will take up the offer?

Check your answer on the web site for this chapter.

Now access the Web page for Chapter 24 and check your answers to the above 
questions. You should also attempt the SPSS activity.

Additional reading

Agresti, A. 1996. An Introduction to Categorical Data Analysis. John Wiley and Sons.
Fox, J. 2000. Multiple and Generalized Nonparametric Regression. Thousand 

Oaks, CA: Sage Publications. Quantitative applications in the social sciences Series 
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No. 131. Covers non-parametric regression models for GLM techniques like logistic 
regression.

Menard, S. 2002. Applied Logistic Regression Analysis (2nd edn). Thousand Oaks, CA: 
Sage Publications. Series: Quantitative Applications in the Social Sciences, 
No. 106 (1st edn), 1995.

O’Connell, A. A. 2005. Logistic Regression Models for Ordinal Response Variables. 
Thousand Oaks, CA: Sage Publications. Quantitative applications in the social sciences, 
Volume 146.

Pampel, F. C. 2000. Logistic Regression: A Primer. Sage quantitative applications in the 
Social Sciences Series #132. Thousand Oaks, CA: Sage Publications.

Useful website
Alan Agresti’s website, with all the data from the worked examples in his book: http://lib.
stat.cmu.edu/datasets/agrest.


